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Abstract. Low-rank representation (LRR) has recently attracted great
interest due to its pleasing efficacy in exploring low-dimensional sub-
space structures embedded in data. One of its successful applications
is subspace clustering which means data are clustered according to the
subspaces they belong to. In this paper, at a higher level, we intend to
cluster subspaces into classes of subspaces. This is naturally described as
a clustering problem on Grassmann manifold. The novelty of this paper is
to generalize LRR on Euclidean space into the LRR model on Grassman-
n manifold. The new method has many applications in computer vision
tasks. The paper conducts the experiments over two real world examples,
clustering handwritten digits and clustering dynamic textures. The ex-
periments show the proposed method outperforms a number of existing
methods.

1 Introduction

In recent years, sparse representation and dictionary learning gain much atten-
tion in signal processing and machine learning applications. The sparse repre-
sentation is based on the principle that a signal can normally be represented
as a linear combinations of few atoms of a dictionary. And plenty of efforts are
dedicated to constructing dictionaries with desired properties [1]. The sparse rep-
resentation model has achieved great success in various application areas such as
face recognition [2], image denoising [3], inpainting [4], image super-resolution
reconstruction [5], and so on. In most of sparse representation methods, one
mainly focuses on independent sparse representation for data objects, and the
relation among data objects or the underlying structure of subspaces that the
subsets of group data generated is usually not well considered. While this intrin-
sic property is very important in some learning tasks, especially in classification
and clustering applications.

Some researchers have introduced holistic constraints such as the low rank
or nuclear norm ‖ · ‖∗ constraints as favoured sparse representation conditions.
The good example in the new trend is the Low Rank Representation (LRR)



2 Boyue Wang, Yongli Hu, Junbin Gao, Yanfeng Sun and Baocai Yin

model [6] which has been successfully used in many applications such as motion
segmentation [7], image segmentation [8], and salient object detection [9]. In
fact, the low rank criterion as one special type of sparsity measure has long
been utilized in matrix completion from corrupted or missing data [10,11]. Low
rank representation tries to reveal the latent sparse property embedded in a
data set in high dimensional space. Specifically, it has been proved that when
the high-dimensional data set is actually composed of a union of several low
dimension subspaces, then the LRR model can reveal this structure through
subspace clustering [6].

The current LRR method originates from the subspace clustering [12], based
on the hypothesis that the data can be represented by the space spanned by a
set of samples. However, this hypothesis may not be always true for many high-
dimensional data in practices. It has been proved that many high-dimensional
data have their embedded low manifold structures. For example, the human face
images are considered as samples from a non-linear submanifold [13]. To deal
with this type of data, one has to respect the local geometry existed in the data,
i.e., manifold learning, or use a non-linear mapping to “flat” the data, like kernel
methods. The classical embedding algorithms such as LLE [14], ISOMAP [15],
LLP [16] and LE [17] are the examples of manifold learning from data.

On the other hand, in computer vision, there are many cases where we clearly
know what the manifold is, but we want to analyze these manifolds for some prac-
tical tasks. For example, a short video clip of dynamic texture can be represented
by a subspace, and all such clips together make up the so-called Grassmann man-
ifold. Thus the problem of clustering dynamic textures becomes clustering the
points on Grassmann manifold, in other words, to cluster many subspaces into
subgroups of subspaces.

Most manifolds can be considered as low dimensional smooth “surfaces” em-
bedded in a higher dimensional Euclidean space. At each point of the manifold, it
is locally similar to Euclidean space. In recent years, Grassmann manifold has at-
tracted great interest in research community. Its Riemannian geometry has been
recently investigated [18]. Grassmann manifold has a nice property that it can be
embedded into the space of symmetric matrices via the projection embedding,
referring to section 2.2 below. This property was used in subspace tracking [19],
clustering [20], discriminant analysis [21], and sparse coding [22] [23]. Harandi
et.al. [23] address the problem of kernel sparse coding and dictionary learning
within the space of symmetric positive definite matrices. In this paper, we will
establish an LRR model on Grassmann manifold based on the similar approach
used in the above work and further explore the model performance in clustering
subspaces, i.e., grouping a number of subspaces into subgroups of subspaces. The
contributions of this work are listed as follows:

– Formulating the LRR model on Grassmann Manifold;
– Exploring the link between the proposed LRR model and kernelization; and
– Providing a practical and effective algorithm for the formulated LRR model.

The rest of the paper is organized as follows. In the next Section, we describe
the proposed low-rank representation on Grassmann Manifold in detail. Section
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Fig. 1. The points on the Grassmannian manifold and its GLRR representation for
clustering.

3 gives the optimization algorithms to resolve the proposed LRR model on on
Grassmann Manifold. In Section 4, the performance of the proposed method is
evaluated by clustering application on two public databases. Finally, conclusions
and suggestions for future work are provided in Section 5.

2 LRR on Grassmann Manifold

2.1 Low-Rank Representation (LRR)

LRR model represents a group of signals on a dictionary with low rank constraint
which reveals the intrinsical low rank structure in the signals. The general LRR
model can be formulated as the following optimalization problem:

min
E,Z
‖E‖2l + λ‖Z‖∗ s.t. Y = DZ + E (1)

where Y ∈ Rd×N is a set of N signals with d dimensions and Z is the corre-
spondent low rank representation of Y under the dictionary D, which could be
trained or constructed from data samples, and E represents the error between
the signals and its reconstructed values on D. ‖ · ‖∗ is the nuclear norm which is
defined as the sum of singular values of a matrix and is the low envelop of the
rank function of a matrix [24]. ‖ ·‖l is the reconstruction error measurement. We
may choose one of different error measurements, depending on the properties
of the signals and the aim of applications. For example, in the LRR clustering
applications [7] [6], ‖ · ‖2,1 is used to cope with columnwise gross errors in sig-
nals. Finally λ > 0 is a penalty parameter to balance the rank term and the
reconstruction error.

In the above LRR model, it is critical to use an appropriate dictionary D
to represent signals. Generally, a dictionary can be learned from some training
data by using one of many dictionary learning methods, such as the K-SVD
method [1]. However, a dictionary learning procedure is usually time-consuming
and so should be done in an offline manner. So many researchers adopt a simple
and direct way to construct a dictionary, i.e. using the original signals themselves
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as the dictionary. In practice, if there are sufficient data samples, the dictionary
composed of original data also has good performance. For example, as in the sub-
space clustering method [12] [25], when the number of the data samples in each
subspace is sufficient, each data point in a union of subspaces could be recon-
structed well by a combination of other points from the same subspace. In fact,
the original LRR model adopts the strategy of using data samples themselves as
the dictionary. Thus (1) is reformulated as follows:

min
E,Z
‖E‖2l + λ‖Z‖∗ s.t. Y = Y Z + E (2)

2.2 LRR on Grassmann Manifolds

In most of cases, the reconstruction error of LRR model in (2) is computed in
the original data domain. For example, the common form of the reconstruction
error is Frobenius norm with Euclidian distance in original data space, i.e. the
error term can be chosen as ‖Y −Y Z‖F . In practice, many high dimension data
have its intrinsic manifold structure, for example, the human faces in images are
proved to have an underlying manifold structure [26]. In the ideal scenarios, the
error should be measured according to the manifold’s geometry1. So we consider
signal representation for the data with manifold structure and formulate the
error measurement in LRR model based on the distance defined on manifold
spaces. Consequently, the LRR model in (2) can be changed as the following
manifold form:

min
E,Z
‖E‖2G + λ‖Z‖∗ s.t. Y = Y Z + E (3)

where ‖ · ‖G is the distance (geodesics) on the manifold. Problem (3) is highly
nonlinear and it is hard to design a practical algorithm. However when the
underlying manifold is Grassmannian, we can use the distance over its embedded
space to replace the manifold distance, as detailed below.

Grassmann manifold G(p, d) [27] is the space of all p-dimensional linear sub-
spaces of Rd for 0 < p < d. A point on Grassmann manifold is a subspace of
Rd which can be represented by any of orthonormal basis X = [x1,x2, ...,xp] ∈
Rd×p. The chosen orthonormal basis is called a representative of a subspace S.
Grassmann manifold G(p, d) has one-to-one correspondence to a quotient man-
ifold of Rd×p, see [27]. On the other hand, we can embed Grassmann manifold
G(p, d) into the space of d order symmetric matrices Sym(d) by mapping

Π : G(p, d)→ Sym(d), Π(X) = XXT (4)

This process can be demonstrated in Fig. 1. The embedding Π(X) is dif-
feomorphism [28] (a one-to-one, continuous, differentiable mapping with a con-
tinuous, differentiable inverse). Then it is reasonable to replace the distance on

1 As the manifold is generally no longer linear, so the linear combination on the man-
ifold should be implemented via exp and log operations on the manifold. We ignore
this for the simplicity of presenting our idea.
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Grassmann manifold by the following distance defined on the symmetric matrix
space under this mapping,

δ(X1, X2) = ‖Π(X1)−Π(X2)‖F = ‖X1X
T
1 −X2X

T
2 ‖F (5)

Fig. 2. The GLRR Model. The mapping of the points on Grassmann manifold, the
tensor X with each slice being a symmetric matrix can be linearly represented by
itself. The element zij of Z represents the similarity between slice i and j.

Given a set of data points {X1, X2, ..., XN} on Grassmann manifold, i.e., a set
of subspaces {S1,S2, ...,SN} of dimension p accordingly, we have their mapped
symmetric matrices {X1X

T
1 , X2X

T
2 , ..., XNX

T
N} ⊂ Sym(d). Similar to the LRR

model in (3), we represent these symmetric matrices by itself and use the error
measurement defined in (5) to construct the LRR model on Grassmann manifold
as follows:

min
E,Z
‖E‖2F + λ‖Z‖∗ , s.t. X = X ×3 Z + E (6)

where X is a 3-order tensor by stacking all mapped symmetric matrices {X1X
T
1 ,

X2X
T
2 , ..., XNX

T
N} along the 3rd mode and ×3 means the mode-3 multiplication

of a tensor and a matrix, see [29]. The representation of X and the 3-order
product operation are illustrated in Fig. 2. E is the reconstruction error in the
3-order tensorial form and ‖ · ‖F is the Frobenius norm of a tensor, which can
be defined as the square root of the sum of the absolute squares of all elements
in E.

To provide a practical algorithm to the optimization problem in (6), we fur-
ther investigate the structure of tensor used in the problem. Intuitively, the
tensor calculation can be converted to matrix operation by tensorial matriciza-
tion, see [29]. For example, we can matricize the tensor X ∈ Rd×d×N in mode-3
and obtain a matrix X(3) ∈ RN×(d∗d) of N data points (in rows). So the prob-
lem seems be solved using the method of the standard LRR model. However, as
the dimension d ∗ d is often too large in practical problems, the existing LRR
algorithm could break down. To avoid this scenario, we carefully analyze the
representation of the construction tensor error E and convert the optimization
problem to an equivalent and readily solvable optimization model.
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Consider the construction error term ‖E‖2F = ‖X − X ×3 Z‖2F in (6). First
we write it into a sum of slices of E as follows:

‖E‖2F =

N∑
i=1

‖Ei‖2F (7)

where Ei = XiX
T
i −

N∑
j=1

zij(XjX
T
j ) is the i-th slice of E.

Using that ‖M‖2F = tr(MTM), we further represent the i-th slice ‖Ei‖2F in
the following form:

‖Ei‖2F = tr


XiX

T
i −

N∑
j=1

zij(XjX
T
j )

T XiX
T
i −

N∑
j=1

zij(XjX
T
j )




= tr
[
(XiX

T
i )T (XiX

T
i )
]
− 2

N∑
j=1

zijtr
[
(XiX

T
i )T (XjX

T
j )
]

+

N∑
j1=1

N∑
j2=1

zij1zij2tr
[
(Xj1X

T
j1)(Xj2X

T
j2)
]

(8)

It is easy to show that

tr
[
(XiX

T
i )T (XiX

T
i )
]

= tr
[
(XT

i Xi)(X
T
i Xi)

]
= tr[Ip] = p (9)

and

tr
[
(XjX

T
j )T (XiX

T
i )
]

= tr
[
(XT

j Xi)
T (XT

i Xj)
]
. (10)

Substituting (9) and (10) into (8), we have

‖Ei‖2F = p− 2

N∑
j=1

zijtr
[
(XT

j Xi)(X
T
i Xj)

]
+

N∑
j1=1

N∑
j2=1

zij1zij2tr
[
(XT

j1Xj2)(XT
j2Xj1)

] (11)

We note that (XT
j Xi) has a small dimension p × p which is easy to handle.

To simplify expression (11), we denote

∆ij = tr
[
(XT

j Xi)(X
T
i Xj)

]
(12)

Clearly ∆ij = ∆ji. So we construct an N ×N symmetrical matrix

∆ = (∆ij)
N
i=1,j=1 (13)
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Substituting (12) and (13) into (11), we have

‖Ei‖2F = p− 2

N∑
j=1

zij∆ij +

N∑
j1=1

N∑
j2=1

zij1zij2∆j1j2

= p− 2

N∑
j=1

zij∆ij + zi∆zTi

(14)

where zi is the i-th row of Z. Substituting (14) into (7), we have a simplified
reconstruction error representation:

‖E‖2F = Np− 2tr[Z∆] + tr[Z∆ZT ] (15)

It can be proved that ∆ is semi-definite positive (see supplementary materi-
als), so we have ∆ = LLT by Cholesky decomposition [30], where L is a N ×N
matrix. So the above representation can be further written as:

‖E‖2F = Np− 2tr[ZLLT ] + tr[ZL(ZL)T ]

= ‖ZL− L‖2F + const.
(16)

Combining (16) and (6), we have an equivalent problem to the LRR model
on Grassmann manifold in (6):

min
Z
‖ZL− L‖2F + λ‖Z‖∗ (17)

The final LRR model on Grassmann manifold resembles the original LRR
model. We would like to give a remark here. In fact, the LRR model on Grassman
manifold (6) can be regarded a kernelized LRR with a kernel feature mapping
defined by (4). It is not surprised that ∆ semi-definite positive as it serves as
a kernel matrix. Finally it is natural that we can further generalize the LRR
model on Grassmann manifold based on other kernel functions.

3 Solution to LRR on Grassmann manifold

In this section, we consider an algorithm to solve the optimization problem
in (17) with a combination of nuclear and Frobenius norm about Z. We can
easily solve it by using linearization technique to deal with the quadratic term
‖ZL−L‖2F . However, to sufficiently take advantage of the existing algorithm for
the original LRR, we employ the Augmented Lagrangian Multiplier (ALM) [31]

So we let J = Z to separate the terms of variable Z and the problem in (17)
can be formulated as follows:

min
Z

1

λ
‖ZL− L‖2F + ‖J‖∗ s.t. J = Z (18)

Its Augmented Lagrangian Multiplier formulation can be defined as the following
unconstrained optimization:

min
Z,J

1

λ
‖ZL− L‖2F + ‖J‖∗ + 〈A,Z − J〉+

µ

2
‖Z − J‖2F (19)
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where A is the Lagrangian Multiplier and µ is a weight to tune the error term
of ‖Z − J‖2F .

In fact, the above problem can be solved by the following two subproblems
in an alternative manner fixing Z or J to optimize the other, respectively.

When fixing Z, the following subproblem is solved to update J :

min
J

(||J ||∗ + 〈A,Z − J〉+
µ

2
||Z − J ||2F ) (20)

When fixing J , the following subproblem should be solved to update Z:

min
Z

(
1

λ
||ZL− L||2F + 〈A,Z − J〉+

µ

2
||Z − J ||2F ) (21)

For the subproblem in (20), it can be solved by the following steps. Firstly,
the optimization is revised as follows:

min
J

(||J ||∗ +
µ

2
||J − (Z +

A

µ
)||2F ) (22)

(22) has a closed-form solution given by,

J∗ = Θµ−1(Z +
A

µ
)

where Θ(·) denotes the singular value thresholding operator (SVT), see [32].
The subproblem in (21) is a quadratic optimization problem about Z. The

closed-form solution is given by

Z = (λµJ − λA+ 2LLT )(2LLT + λµI)−1 (23)

Once solving the former two subproblems about J and Z respectively, we
achieve a complete solution to LRR on Grassmann manifold. The whole proce-
dure of LRR on Grassmann manifold is summarized in Algorithm 1.

4 Experiments

4.1 Data Preparation and Experiment Settings

To evaluate the proposed LRR model on Grassmann Manifold, we apply it to im-
age signals representation and then the representation results are used for image
clustering by Ncut method [33]. We choose two widely used public databases to
test our method. One is the MNIST handwriting digits [34] image set, in which
there are more than 70000 digit images written by different persons. The other
is the DynTex++ database [35]. This database is a collection of videos from
different classes.

To apply our method for image clustering, we use three steps to set up exper-
iments: (a) Mapping the raw signals onto the points on Grassmann Manifold; (b)
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Algorithm 1 Low-Rank Representation on Grassmann Manifold.

Input: The Grassmann sample set {Xi}Ni=1,Xi ∈ G(p, d), the cluster number k and
the balancing parameter λ.

Output: The Low-Rank Representation Z
1: Initialize:J = Z = 0, A = B = 0, µ = 10−6, µmax = 1010 and ε = 10−8

2: for i=1:N do
3: for j=1:N do
4: ∆ij ← tr[(XT

j Xi)(X
T
i Xj)];

5: end for
6: end for
7: Computing L by Cholesky Decomposition ∆ = LLT ;
8: while not converged do
9: fix Z and update J by

J ← min
J

(||J ||∗+ < A,Z − J > +µ
2
||Z − J ||2F );

10: fix J and update Z by
Z ← (λµJ − λA+ 2LLT )(2LLT + λµI)−1 ;

11: update the multipliers:
A← A+ µ(Z − J)

12: update the parameter µ by µ← min(ρµ, µmax)
13: check the convergence condition:

‖Z − J‖∞ < ε
14: end while

Applying the low-rank representation on Grassmann Manifold and (c) Conduct-
ing Ncut over the representation results from LRR. Note that our LRR model
is designed to cluster points on Grassmann manifold (i.e., clustering subspaces),
while most existing clustering algorithms are designed for clustering raw objec-
t/signal points. In essence, all the existing algorithms are only considered as
benchmarks in assessing our new method.

The raw data in our experiments are image sets with huge volume, for ex-
ample, the digit image sets for clustering have 3495 image sets and each set is
formulated as a high-dimensional vector of size 28×28×20 = 15680. It is difficult
to process this high-dimensional data set on a common machine. So we use PCA
(Principal Component Analysis) to reduce the dimension of raw data. Then the
data with reduced dimension is represented by LRR model and used for final
clustering. For the purpose of clustering comparison, the Ncut method is com-
pared with K-means method for different data representation. Table 1 shows the
methods to be compared with our method in our experiments. Under the LRR
model, the performance of K-means is bad, so we give up the 4th and the last
experiments. All the algorithms are coded by matlab R2011b and implemented
on an Xeon-X5675 3.06GHz CPU machine with 12G RAM.

Mapping a sub-group of raw signals onto the points on Grassmann Manifold
is a key step in our method. As a point on Grassmann Manifold is represented by
an orthonormal basis of a subspace, given the samples from a subspace we should
construct its basis representation. According to the work of Harandi [22] [36], we
simply adopt Singular Value Decomposition(SVD) to construct the subspace ba-
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Data processing Data representation Clustering method Combining method
method method

PCA - Ncut PNcut

PCA - K-mean PK-mean

PCA LRR Ncut PLRRNcut

PCA LRR K-mean -

Grassmann Manifold - Ncut GNcut

Grassmann Manifold - K-mean GKmean

Grassmann Manifold LRR Ncut GLRRNcut
(our method)

Grassmann Manifold LRR K-mean -
Table 1. Different combining clustering methods with variety in data processing, data
representation and clustering methods.

sis. Concretely, given a subset of images from a class, e.g., the same digits written
by the same person, denoted by {Yi}Mi=1 and each Yi is a grey-scale image with
dimension m× n, we can construct a matrix Γ = [vec(Y1), vec(Y2), ..., vec(Ym)]
of size (m×n)×M by vectorizing each image Yi. Then Γ is decomposed by SVD
as Γ = UΣV . We can pick the first p singular-vectors of U as the representative
of a point on Grassmann manifold G(p,m× n) with size (m× n)× p. In the fol-
lowing experiments, the points on Grassmann Manifold of MNIST handwriting
digits images are constructed by the above method.

4.2 MNIST Handwritten digits Clustering

The MNIST database [34] has been widely used in pattern recognition field. The
digit images in this database are written by about 250 volunteers and for each
digit there are different number of samples. In recognition application, 60,000
digit images in the database are often used as training data and 10,000 images
are used as testing data. All the digit images in this databse have been size-
normalized and centered in a fixed size of 28 × 28, so it does not need much
efforts for preprocessing and formatting. Fig. 3(a) shows some digit samples of
this database. As the proposed LRR model on Grassmann Manifold dose not
need training, we merge the training set and testing set into a single sample set
to do clustering experiment.

In our experiment, we created subgroups randomly according to their classes
so that the each subgroup consists of 20 images, i.e. M = 20. The subspace
generated by each subgroup will be considered as a point on Grassmann mani-
fold. Our task is to cluster all the available N = 3495 image subgroups into ten
categories. Please note that we are clustering subgroups, not single digits. As
mentioned above, for each subgroup of 20 images, we form them as vectors and
then stack them into a matrix Γ . Then SVD decomposition is applied on Γ and
the front p = 10 singular-vectors of its left singular matrix are used as the sub-
space basis, the point on Grassmann Manifold [22] [36]. Finally the algorithm of
the proposed LRR model on Grassmann Manifold is conducted on these points
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(a) The origin digit images (b) The digit images with noise

Fig. 3. The MNIST digit samples for experiments

on Grassmann manifold and the result of Z is pipelined to the Ncut algorithm.
As a benchmark comparison, we mimic a point in Euclidean for each subgroup
of 20 images by stacking them into a vector of dimension 28× 28× 20. For PCA
based method, the size 28 × 28 × 20 = 15680 of each vector is reduced to 1566
by PCA.

The experimental results are reported in Table 2. It is shown that our pro-
posed algorithm has the highest accuracy of 99%, outperforming other methods
more than 10 percents. The two worse results are for GNcut and GK-means
methods. This can be explained that, after the Grassmann Manifold mapping, it
is not a proper way to measure the Enclidean distance between the points on the
manifold space. As our LRR model use the Grassmann distance measurement in
a transformed space, the clustering results of our method are better than that
of PNcut or PLRRNcut, in which the Euclidean distance is used to measure the
relation of data reduced by PCA. The manifold mapping extracts more useful
information about the differences among sample data. Then the combination of
Grassmann distance and LRR model brings good accuracy for Ncut clustering.

PK-means PNcut PLRRNcut GK-means GNcut our method

Accuracy 0.8638 0.9013 0.8552 0.4103 0.3339 0.99
Table 2. Subspace clustering results on the MINST database.

We further tested the robustness of the proposed algorithm by adding noise
to the digit images. We added a Gaussian noise N(0, σ2) onto all the digit images.
Fig 3(b) shows the digit images with noise σ = 0.45. Generally, the noises will
effect the performance of the clustering algorithm, especially when the noise is
heavy. Fig 4 shows the clustering performance of different methods with the noise
standard deviation σ ranging from 0.05 to 0.55. It indicates that our algorithm
keeps over 99% accuracy for the standard deviation up to 0.45, while the accuracy
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of other methods is generally lower than our method and behaves unstable when
the noise standard deviation varies. This indicates that our proposed algorithm
is robust for certain level of noises.

λ is an important parameter for balancing the error term and the low-rank
term of the LRR model on Grassmann Manifold in (6). This is the same case for
the PLRRncut method. We studied the effectiveness of λ for the final clustering
result in several experiments. It can be observed that the noise level will change
the rank of low-rank representation Z. A larger noise level will increase the rank
of the represented coefficient matrix. So a proper way to tune λ is dependent
on noise level. Generally. we can make λ small when the noise of data is lower
and use a larger λ value if the noise level is higher. In our experiments, we set
λ = 0.1 for the our LRR model and set λ = 0.5 for PLRR method.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0.2
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A
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Our method

Fig. 4. Clustering on MNIST database with different level of noise.

4.3 Dynamic Texture Clustering

DynTex++ database [35] is derived from a total of 345 video sequences in dif-
ferent scenarios which contains river water, fish swimming, smoke, cloud and so
on. These videos are labeled as 36 classes and each class has 100 subsequences
(totally 3600 subsequences) with a fixed size of 50 × 50 × 50 (50 gray frames).
Some samples of DynTex++ are shown in Fig 5. This is a challenge database
for clustering because most of texture from different class is fairly similar.

Our method uses a set of samples to construct points on Grassmann Mani-
fold, it is suitable to process video sequence data as a clip of continuous frames
can be naturally collected as an image set. Moreover, as video sequence con-
tain useful space and time context information for clustering, in order to utilize
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Fig. 5. DynTex++ samples. Each row includes frames from same video sequence and
each four frames is a continuous clip.

these infomation, instead of using SVD method, we use Local Binary Pattern-
s from Three Orthogonal Plans (LBP-TOP) model [37] to construct points on
Grassmann Manifold. The LBP-TOP method extract LBP features from three
orthogonal planes and concatenate a number of neighbour points’ features to
form a co-occurrence feature. After extracting LBP-TOP features for the 3600
subsequences, we get 3600 matrices of size 177× 14 as the points on Grassmann
Manifold. Then these features are represented by LRR model on Grassmann
Manifold and its representation Z is used for Ncut clustering. As the data vol-
ume of all the 3600 subsequence is huge, we randomly pick K classes from 36
chesses and use these classes data for clustering experiments. The experiments
is repeated several times for each K. In the experiments, λ is also set to 0.1. For
the PCA based method, the prototype 50 × 50 × 50 subsequence is reduced to
2478 and λ for the PLRRNcut is set to 0.5.

The clustering results for the DynTex++ database are shown in Fig. 6. For
different number of classes, the accuracy of the proposed LRR model on Grass-
mann Manifold are superior to the other methods more than 10 percents, due
to information extraction capability in Grassmann Manifold mapping over the
LBP-TOP features. We also observed that all of accuracies decreases as the num-
ber of classes increases. This may be caused by the clustering challenge when
more similar texture images are added into the data set.

5 Conclusion and Future Work

In this paper, we propose a novel LRR model on Grassmann manifold, in which
we exploit the property of Grassmann manifold. To resolve the high-dimension
issue in the resulting LRR model, we further explore the structured embedding
mapping and derive an equivalent optimization problem which is easily solvable.
The proposed model and algorithm have been assessed against a number of ex-
isting clustering algorithms. The experimental results show the efficiency and
robustness of the proposed model. In most of the experimental cases, the pro-
posed method outperforms other benchmark methods. As a future work, we will
consider incorporating `1/`2 errors in the LRR model on Grassmann manifold
and further explore kernelized LRR models on Grassmann manifold.
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Fig. 6. Clustering results on DynTex++ database with the number of classes ranging
from 3 to 10.
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28. Helmke, J.T., Hüper, K.: Newtons’s method on Grassmann manifolds. Technical
report, Preprint: [arXiv:0709.2205] (2007)

29. Kolda, G., Bader, B.: Tensor decomposition and applications. SIAM Review 51(3)
(2009) 455–500

30. Gentle, J.E.: Numerical Linear Algebra for Applications in Statistics. Springer-
Verlag Press (1998)

31. Shen, Y., Wen, Z., Zhang, Y.: Augmented Lagrangian alternating direction method
for matrix separation based on low-rank factorization. Optimization Methods and
Software 29 (2014) 239–263

32. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix
completion. SIAM Journal on Optimization 20 (2008) 1956–1982 http://www-
stat.stanford.edu/ candes/papers/SVT.pdf.

33. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence 22 (2000) 888–905

34. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86 (1998) 2278–2324

35. Ghanem, B., Ahuja, N.: Maximum margin distance learning for dynamic texture
recognition. In: European Conference on Computer Vision. (2010) 223–236

36. Harandi, M., Sanderson, C., Hartley, R., Lovell, B.: Sparse coding and dictionary
learning for symmetric positive definite matrices: A kernel approach. In: European
Conference on Computer Vision. (2012) 216–229

37. Zhao, G., Pietikäinen, M.: Dynamic texture recognition using local binary patterns
with an application to facial expressions. IEEE Transactions on Pattern Analysis
and Machine Intelligence 29 (2007) 915–928


